
 

AFRL-RH-WP-TR-2013-0006 
 

  
 

HUMAN ACTIVITY MODELING AND    
                 SIMULATION WITH HIGH BIOFIDELITY 

 
Zhiqing Cheng 
Steve Mosher 
Jeanne Smith 

Isiah Davenport 
Infoscitex 

4027 Colonel Glenn Hwy 
Beavercreek, OH  45431 

 
John Camp 

Darrell Lochtefeld 
Human Signatures Branch 

 
 
 

JANUARY 2013 

 
Interim Report 

 
 

                  Distribution A:  Approved for public release; distribution is unlimited. 
 

 
AIR FORCE RESEARCH LABORATORY 
711TH HUMAN PERFORMANCE WING, 

HUMAN EFFECTIVENESS DIRECTORATE, 
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433 

AIR FORCE MATERIEL COMMAND 
UNITED STATES AIR FORCE  



NOTICE AND SIGNATURE PAGE 

Using Government drawings, specifications, or other data included in this document for 
any purpose other than Government procurement does not in any way obligate the U.S. 
Government. The fact that the Government formulated or supplied the drawings, 
specifications, or other data does not license the holder or any other person or 
corporation; or convey any rights or permission to manufacture, use, or sell any patented 
invention that may relate to them.  

This report was cleared for public release by the 88th Air Base Wing Public Affairs Office 
and is available to the general public, including foreign nationals. Copies may be obtained 
from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).   

AFRL-RH-WP-TR-2013-0006 HAS BEEN REVIEWED AND IS APPROVED FOR 
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT. 

 

 

 

 
___________________________________ __________________________________ 
Melody Darby     Louise A. Carter, PhD. 
Work Unit Manager     Human Centered ISR Division 
Human Signatures Branch   Human Effectiveness Directorate 
      711th Human Performance Wing 
      Air Force Research Laboratory 
 
 
 
 
 
This report is published in the interest of scientific and technical information exchange, and its 
publication does not constitute the Government’s approval or disapproval of its ideas or findings.  

 



i 
 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data 
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, 
including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, 
Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if 
it does not display a currently valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1.  REPORT DATE  (DD-MM-YY) 2.  REPORT TYPE 3.  DATES COVERED (From - To) 

09 01 13 Interim    1 January 2011 - 9 January 2013 
4.  TITLE AND SUBTITLE 

 
Human Activity Modeling and Simulation with High Biofidelity  

5a.  CONTRACT NUMBER 

In-House 

5b.  GRANT NUMBER 

5c.  PROGRAM ELEMENT NUMBER 

0603456F 
6.  AUTHOR(S) 

*Zhiqing Cheng 
*Stephen Mosher 
*Jeanne Smith 
*Isiah Davenport 

**John Camp 
**Darrell Lochtefeld 

5d.  PROJECT NUMBER 

2830 
5e.  TASK NUMBER 

HP 
5f.  WORK UNIT NUMBER 

H048 (2830HP07) 

7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8.  PERFORMING ORGANIZATION 

*Infoscitex 
 4027 Col Glenn Hwy 
  Beavercreek, OH  45431 

     REPORT NUMBER 
 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10.  SPONSORING/MONITORING

**Air Force Materiel Command 
Air Force Research Laboratory 
711th Human Performance Wing 
Human Effectiveness Directorate 
Human Centered ISR Division 
Human Signatures Branch 
Wright-Patterson Air Force Base, OH 45433 

 
 

       AGENCY ACRONYM(S) 

    711 HPW/RHXB 

11. SPONSORING/MONITORING 
      AGENCY REPORT NUMBER(S) 

AFRL-RH-WP-TR-2013-0006 

12.  DISTRIBUTION/AVAILABILITY STATEMENT 

Distribution A: Approved for public release, distribution is unlimited.    
13.  SUPPLEMENTARY NOTES 

Cleared:   88ABW-2012-3872  13 Jul 2012 

14.  ABSTRACT 
Human activity Modeling and Simulation (M&S) plays an important role in simulation-based training and Virtual Reality (VR). 
However, human activity M&S technology currently used in various simulation-based training tools and VR systems lacks sufficient 
biofidelity and thus is not able to describe and demonstrate the nuances of human activities and human signatures. This inadequacy 
becomes crucial when the training or the use of VR is human centered, such as human threat recognition training and dismount 
detection training. Human signatures that can be observed from a fairly long distance include body shape, gesture, and motion. In 
recent years, the Air Force Research Laboratory has investigated human modeling and simulation with high biofidelity, with an 
emphasis on true human shape and motion. This paper presents the technical development from these investigations, which include (a) 
static shape modeling and morphing; (b) pose modeling  and dynamic modeling; (c) motion capture (in particular, markerless motion 
capture); (d) inverse kinematics and motion mapping/creation; and (e) creation and replication of human activity in 3-D space with 
true shape and motion. A brief review is conducted to discuss the methods and techniques related to these topics, along with some 
research results.  Examples are provided to illustrate the importance of biofidelity in the simulation-based training. 
15.  SUBJECT TERMS   

Modeling and Simulation, Virtual Reality, Whole body 3-D surface scans, Coherent Point Drift, Principal components analysis 

16.  SECURITY CLASSIFICATION OF: 17. LIMITATION  
OF ABSTRACT:

SAR 

18.  NUMBER OF 
PAGES 

   15 

19a.  NAME OF RESPONSIBLE PERSON (Monitor) 

a.  REPORT 
U 

b. ABSTRACT 
U 

c. THIS PAGE 
U 

         Melody Darby 
19b.  TELEPHONE NUMBER (Include Area Code) 

N/A 
 Standard Form 298 (Rev. 8-98)   

Prescribed by ANSI Std. Z39-18 

i 



ii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE IS INTENTIONALLY LEFT BLANK. 
  



iii 
 

TABLE OF CONTENTS 
 

ABSTRACT .................................................................................................................................................................. 1 

ABOUT THE AUTHORS ............................................................................................................................................. 1 

INTRODUCTION ......................................................................................................................................................... 2 

STATIC HUMAN SHAPE MODELING ..................................................................................................................... 2 

Surface Registration .............................................................................................................................................. 2 

Shape Variation Characterization .......................................................................................................................... 3 

Shape Parameterization ......................................................................................................................................... 3 

Shape Reconstruction ............................................................................................................................................ 4 

DYNAMIC SHAPE MODELING ................................................................................................................................ 4 

Body Deformation Modeling ..................................................................................................................................... 4 

Coordinate Transformation .................................................................................................................................... 5 

Surface Deformation Characterization .................................................................................................................. 5 

Surface Deformation Reconstruction ..................................................................................................................... 5 

Surface Deformation Representation ..................................................................................................................... 5 

Surface Deformation Prediction ............................................................................................................................ 6 

Dynamic Shape Capture and Reconstruction ............................................................................................................ 6 

Dynamic Shape Capture ........................................................................................................................................ 6 

Shape Reconstruction from Imagery Data ............................................................................................................. 6 

HUMAN MOTION CAPTURE AND PREDICTION .................................................................................................. 6 

Marker-Based Motion Capture .................................................................................................................................. 7 

Markerless Motion Capture ....................................................................................................................................... 7 

Inverse kinematics ..................................................................................................................................................... 8 

Motion Mapping ........................................................................................................................................................ 8 

Motion Creation ......................................................................................................................................................... 8 

ACTIVITY REPLICATION AND CREATION ........................................................................................................... 9 

Replication ................................................................................................................................................................. 9 

Creation ..................................................................................................................................................................... 9 

CONCLUSIONS ........................................................................................................................................................... 9 

REFERENCES ............................................................................................................................................................ 10 

 
  



 
 
 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012 
 

1 
Distribution A:  Approved for public release; distribution is unlimited.  88ABW-2012-3872, 13 July 2012. 

Human Activity Modeling and Simulation with High Biofidelity 
 

Zhiqing Cheng, Stephen Mosher John Camp and Darrell Lochtefeld 

Jeanne Smith, and Isiah Davenport 711th Human Performance Wing 

Infoscitex Corporation Air Force Research Laboratory 
Dayton, Ohio, USA 

{zcheng, smosher}@infoscitex.com 
{jsmith, idavenport}@infoscitex.com 

Dayton, Ohio, USA 
john.camp@wpafb.af.mil 

darrell.lochtefelt@wpafb.af.mil 

 
ABSTRACT 

 
Human activity Modeling and Simulation (M&S) plays an important role in simulation-based training and Virtual 
Reality (VR). However, human activity M&S technology currently used in various simulation-based training tools 
and VR systems lacks sufficient biofidelity and thus is not able to describe and demonstrate the nuances of human 
activities and human signatures. This inadequacy becomes crucial when the training or the use of VR is human 
centered, such as human threat recognition training and dismount detection training. Human signatures that can be 
observed from a fairly long distance include body shape, gesture, and motion. In recent years, the Air Force 
Research Laboratory has investigated human modeling and simulation with high biofidelity, with an emphasis on 
true human shape and motion. This paper presents the technical development from these investigations, which 
include (a) static shape modeling and morphing; (b) pose modeling and dynamic modeling; (c) motion capture (in 
particular, markerless motion capture); (d) inverse kinematics and motion mapping/creation; and (e) creation and 
replication of human activity in 3-D space with true shape and motion. A brief review is conducted to discuss the 
methods and techniques related to these topics, along with some research results. Examples are provided to illustrate 
the importance of biofidelity in the simulation-based training.  
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INTRODUCTION 

Human activity modeling and simulation (M&S) plays 
an important role in simulation-based training and 
virtual reality (VR). However, the human activity M&S 
technology currently used in most simulation-based 
training tools and VR systems lacks sufficient realism. 
In order to virtually describe and demonstrate the 
nuances of human activities and human signatures, 
modeling human shape and motion with high 
biofidelity is crucial.  
 
Using conventional human modeling tools (e.g., 
Blender, 3dsMax, and Maya) or game engines (e.g., 
CryEngine 3, VBS2, and Delta3D), human activity 
modeling includes character building that creates its 
shape model and character animation that drives the 
model with the prescribed motion, both of which are 
associated with a skeleton model of the character. The 
shape model is defined by the surfaces attached to the 
skeleton, and the process of attaching surfaces to the 
skeleton is usually called skinning. The prescribed 
motion is given by the gross motion (translation and 
rotation of the whole body) and a sequence of poses 
that in turn, is defined by the joint angles for each pose. 
As the skeleton is driven by the prescribed motion, the 
attached surfaces will move accordingly and deform in 
a certain pattern which is controlled by specific 
blending schemes of the tools used.  Therefore, in order 
to achieve high biofidelity for human activity M&S, it 
is essential to attain high biofidelity in the M&S of 
human shape and motion.   
  
From the perspective of the motion status of a subject 
to be modeled, human shape modeling can be classified 
as either static or dynamic. Static shape modeling 
creates a model to describe the human shape at a 
particular pose, usually a standing pose. The static 
model can be used for human activity modeling as a 
character shape model. Dynamic shape modeling deals 
with shape variations due to pose changes or due to the 
subject being in motion. Apart from conventional 
approaches for human activity modeling and 
simulation, dynamic shape modeling has emerged as a 
viable alternative technique and shown its great 

potential for human activity modeling. Dynamic human 
shape modeling describes human shape changes during 
motion and thus can be used to directly replicate 
human activities in a 3-D space.   
 
In recent years, a series of research activities has been 
performed at the Air Force Research Laboratory on 
human modeling and simulation, with an emphasis on 
high biofidelity and the goal to recognize human 
activities. This paper presents the results of these 
studies, along with discussions on the topics of static 
and dynamic human shape modeling, human motion 
capture and creation, and human activity replication 
and creation.   
 

STATIC HUMAN SHAPE MODELING 
 
Software tools such as MakeHuman 
(http://www.makehuman.org/, a free software tool) are 
now available to create various generic human shape 
models with input parameters for gender, height, 
weight, etc. While these human shape models provide a 
realistic, graphical description of human body shape, 
they are often not able to depict the unique features that 
are associated with an individual or with a particular 
racial or ethnic group and thus lack the desired 
biofidelity. With advances in surface digitization 
technology, a 3-D surface scan of the whole body can 
be acquired in a few seconds. Whole body 3-D surface 
scans provide a very detailed capture of the body 
shape. Based on body scan data, human shape 
modeling with high biofidelity becomes possible. 
However, scan data files are usually very large and 
noisy and require further processing before becoming 
usable for shape modeling. The major issues involved 
with static shape modeling using scan data include 
surface registration, shape variation characterization, 
and shape reconstruction.  
 
Surface Registration 
 
Surface registration or point-to-point correspondence 
among the scan data of different subjects is essential to 
many problems of human shape modeling, such as 
shape parameterization and characterization,  human 
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shape variability (Allen et al., 2003; Azouz et al., 
2005), and pose modeling and animation (Allen et al., 
2002; Anguelov et al., 2005) where multiple subjects 
or diverse poses are involved. The method used for 
surface registration in this paper is called Coherent 
Point Drift (CPD), which can be used to register two 
point sets rigidly or non-rigidly. The description of 
CPD is provided in (Myronenko and Song, 2010).  
Often, the number of surfaces (accordingly the number 
of points) of the original scan data may be too large to 
be handled by the available computer memory on a 
typical workstation.  Also, the original data may 
contain poorly formed polygons, webs between 
adjacent surfaces such as fingers and holes in the mesh. 
Therefore, the original scan data were smoothed and 
then simplified. After the number of faces was reduced 
to 20,000, the registration process was successfully 
completed.  Figures 1 (a) and (b) illustrate the 
registration results of two different subjects in the same 
pose.  

 
(a) Before registration 

 
(b) After Registration 

Figure 1. Surface (point-to-point) registration between 
two different subjects in the same pose 

Shape Variation Characterization 
 
The human body comes in many shapes and sizes.  
Characterizing human shape variation is traditionally 
the subject of anthropometry—the study of human 
body measurement. The sparse measurements of 
traditional anthropometric shape characterization 
curtail its ability to capture the detailed shape 
variations needed for realism. While characterizing 
human shape variation based on a 3-D range scan could 
capture the details of shape variation, the method relies 
on three conditions: noise elimination, hole-filling and 
surface completion, and point-to-point correspondence. 
Also, whole body scanners generate large data files that 
cannot be used directly for shape variation analysis. 
Therefore, it is necessary to convert 3-D scans to a 
compact representation that retains information of the 
body shape. Principal components analysis (PCA) has 
often been used as a solution to the problem. Allen et 
al. (2003) captured the variability of human shape by 
performing PCA over the displacements of the points 
from the template surface to an instance surface. 
Anguelov et al. (2005) also used PCA to characterize 
the shape deformation and then used the principal 
components for shape completion. Ben Azouz et al. 
(2005) applied PCA to the volumetric models where 
the vector is formed by the signed distance from a 
voxel to the surface of the model.  
 
Shape Parameterization 
 
For human shape modeling, it is desirable to have a set 
of parameters to describe human shape and its variation 
among different subjects. Human body shape can be 
parameterized in three different levels.  
 Using surface elements. After surface registration 

of scan data among all subjects, the same set of 
vertices or other surface elements can be used to 
describe different body shapes (3D surfaces) 
(Allen et al., 2003; Anguelov et al., 2005). In other 
words, different body shapes are parameterized by 
the same set of vertices. While this method of 
characterization usually incurs a large number of 
parameters, a body shape can be directly generated 
from these parameters. 

 Using principal component coefficients. After 
PCA, human body shape space is characterized by 
principal components. Each shape can be projected 
onto the eigenspace formed by principal 
components.  Within this space, a human shape 
can be parameterized by its projection coefficients 
(Allen et al., 2003; Azouz et al., 2005). If the full 
eigenspace is used, perfect reconstruction can be 
achieved from the parameters to the body shape.   

 Using anthropometric features. The relationship 
between eigenvectors and human anthropometric 
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features (e.g., height and weight) can be 
established through regression analysis (Allen et 
al., 2003; Azouz et al., 2005), and then a body 
shape can be parameterized by these features. This 
type of parameterization is not an exact mapping 
between a human body shape and its 
anthropometric features. Perfect reconstruction of 
a body shape usually cannot be achieved given a 
limited number of features.     

 
Shape Reconstruction 
 
Given a number of scan data sets of different subjects, 
a novel human shape can be created that will have 
resemblance to the samples but is not the exact copy of 
any existing one. This can be realized in three ways. 
 Interpolation or morphing. One shape can be 

gradually morphed to another by interpolating 
between their vertices or other graphic entities. In 
order to create a faithful intermediate shape 
between two individuals, it is critical that all 
features are well-aligned; otherwise, features will 
cross-fade instead of move. Figure 2 illustrates 
shape morphing from one male subject to a female 
subject performed by the authors (Cheng et al, 
2009).  

 Reconstruction from eigenspace. After PCA 
analysis, the features of sample shapes are 
characterized by eigenvectors or eigen-persons 
which form an eigenspace. Any new shape model 
can be generated from this space by combining a 
number of eigen-persons with appropriate 
weighting factors (Azouz et al., 2005).     

 Feature-based synthesis. Once the relationship 
between human anthropometric features and 
eigenvectors is established, a new shape model can 
be constructed from the eigenspace with desired 
features by editing multiple correlated attributes, 
such as height and weight (Allen et al., 2003) or 
fat percentage and hip-to-waist ratio (Seo et al., 
2003).  

 
Figure 2. Morphing from one subject to another 

DYNAMIC SHAPE MODELING 
 
Dynamic shape modeling deals with shape variations 
due to pose changes or due to the subject being in 
motion. Two major issues involved in dynamic shape 
modeling are surface (shape) deformation with respect 
to pose changes and dynamic shape capture and 
reconstruction. 
 
Body Deformation Modeling 
 
Two main approaches for modeling body deformations 
are anatomical modeling and example-based modeling. 
The anatomical modeling is based on an accurate 
representation of the major bones, muscles, and other 
interior structures of the body (Aubel and Thalmann 
2001). The finite element method is the primary 
modeling technique used for anatomical modeling. In 
the example-based approach, a model of some body 
part in several different poses with the same underlying 
mesh structure can be generated by an artist. These 
poses are correlated to various degrees of freedom, 
such as joint angles. Lewis et al. (2000) and Sloan et al. 
(2001) developed similar techniques for applying 
example-based approaches to meshes. Instead of using 
artist-generated models, recent work on the example-
based modeling uses range-scan data. Allen et al. (2002 
& 2003) presented an example-based method for 
calculating skeleton-driven body deformations. Their 
example data consists of range scans of a human body 
in a variety of poses. Using markers captured during 
range scanning, a kinematic skeleton is constructed 
first to identify the pose of each scan. Then a mutually 
consistent parameterization of all the scans is 
constructed using a posable subdivision surface 
template. Anguelov et al. (2005) developed a method 
that incorporates both articulated and non-rigid 
deformations.  A pose deformation model was 
constructed from a training set of scan data that derives 
the non-rigid surface deformation as a function of the 
pose of the articulated skeleton. A separate model of 
shape variation was derived from the training data also.  
The two models were combined to produce a 3-D 
surface model with realistic muscle deformation for 
different people in different poses. The integrated 
model is called SCAPE (Shape Completion and 
Animation of People). 

 
The method developed for pose deformation modeling 
in this paper employs the template model associated 
with the pose data set (Anguelov et al. 2005). It 
consists of 16 segments, each of which has the pre-
defined surface division. The method consists of 
multiple steps, which are described below.  
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Coordinate Transformation  
The body shape variations caused by pose changing 
and motion can be decomposed into rigid and non-rigid 
deformation.  Rigid deformation is associated with the 
orientation and position of segments.  Non-rigid 
deformation is related to the changes in shape of soft 
tissues associated with the segments in motion, which, 
however, excludes local deformation caused by muscle 
action alone.  In the global (body) coordinate system, a 
segment surface has the articulated motion and surface 
deformation. However, in the local (segment) 
coordinate system, a segment surface has deformation 
only. Therefore, by transforming the global coordinate 
system to the local system, the effect of the articulated 
motion on each segment could be eliminated.  
 
Surface Deformation Characterization 
First, the surface deformations of each segment are 
collected in all poses. Then PCA can be used to find 
the principal components of the surface deformation 
for each segment. Figure 3 illustrates the eigen value 
percentage ratio in each component (total 70) of all 
segments (total 16). It is shown that for all segments, 
the variance (eigen value ratio) of principal 
components increases sequentially, and significant 
principal components are those from the order of 60 to 
70. As PCA exploits the underlying characteristics of a 
data set, the surface deformation of a segment in all 
observed poses can be characterized by these principal 
components.  The surface deformation in a particular 
pose can be decomposed or projected in the space that 
is formed by the PCs. Each decomposition/projection 
coefficient represents the contribution or effect from 
the corresponding PC. 

 

Figure 3. Eigen value ratio for all 16 segments. 

 
Surface Deformation Reconstruction 
The decomposition/projection coefficients can be used 
to reconstruct surface deformation. There are two types 
of reconstruction: (a) Full reconstruction, which uses 
all the PCs or eigenvectors; and (b) Partial 
reconstruction, which uses a number of significant PCs. 

Figure 4 illustrates the reconstructed shape for 2 
different poses. In each row of Figure 4, the first is the 
original shape, the second is the shape from full 
reconstruction, and the third and fourth are the shapes 
from partial reconstruction with 20 and 10 largest PCs, 
respectively. It is shown that the full reconstruction can 
completely reconstruct the original surface deformation 
in all poses, which means it is a perfect reconstruction, 
and partial reconstruction can provide a reasonable 
approximation of the original shape. While full 
reconstruction provides complete reconstruction of the 
original deformation, it is not necessary in many cases. 
On the other hand, the accuracy of partial 
reconstruction can be controlled by selecting a proper 
number of significant PCs. As partial reconstruction 
provides a reasonable simplification or approximation 
to the original deformation, it is often used in practice.   

 

(a) Pose-1 

 

(b) Pose-2 
Figure 4. Shape reconstruction using principal 
components (First column: original shape; second 
column: full reconstruction; Third column: partial 
reconstruction with 20 largest PCs; Fourth column 
partial reconstruction with 10 largest PCs). 

 
Surface Deformation Representation  
As the surface deformation of a segment is assumed to 
depend only on the rotation of the joint(s) connected, 
the relationship between the surface deformation and 
joint rotations needs to be defined. Joint rotations can 
be conveniently represented by their twist coordinates. 
The surface deformation can be compactly represented 
by its decomposition/projection coefficients.  Ideally, 
the surface deformation can be expressed as a function 
of joint rotations.  The relation between surface 
deformation and joint rotations can be linear or 
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nonlinear. An appropriate function needs to be 
identified. The same function can be applied to all 
poses. Then, the measurement of surface deformation 
and joint rotations in all poses can be used to estimate 
the parameters of the function. 
 
Surface Deformation Prediction  
It is not feasible to measure the surface deformation of 
each segment for all possible poses, because the human 
body has a large number of degrees of freedom and can 
take virtually an infinite number of different poses. As 
a matter of fact, only a limited number of poses can be 
investigated in tests, but it is often required to predict 
surface deformation for new poses that have not been 
observed. Three methods can be used to predict surface 
deformation.   
• Method-1: using principal components. Given the 

joint twist angles for a segment to define a 
particular pose, projection coefficients can be 
estimated. Using the full or a partial set of 
principal components, the surface deformation is 
reconstructed.   

• Method-2: taking the nearest neighbor pose.  
Given the joint twist angles, find the nearest 
neighbor to the prescribed pose and take its surface 
deformation as an approximation. The 
neighborhood is measured in terms of the 
Euclidean distance between the joint twist angles 
for the two poses.  

• Method-3: interpolating between two nearest 
neighbors. Given the joint twist angles, find two 
nearest neighbors to the prescribed pose. The pose 
deformation is determined by interpolating 
between the deformations of these two neighbor 
poses.  

 
Figure 5 illustrates the predicted shape for 8 different 
poses using method-2. 

 

 

 
Figure 5. Predicted shape in 8 different poses. 

 

Dynamic Shape Capture and Reconstruction  
   
Dynamic Shape Capture 
During dynamic activities, the surface of the human 
body moves in many subtle but visually significant 
ways: bending, bulging, jiggling, and stretching. Park 
and Hodgins (2006) developed a technique for 
capturing and animating those motions using a 
commercial motion capture system with approximately 
350 markers.  Supplemented with a detailed, actor 
specific surface model, the motion of the skin was then 
computed by segmenting the markers into the motion 
of a set of rigid parts and a residual deformation.    
Sand et al. (2003) developed a method (a needle 
model) for the acquisition of deformable human 
geometry from silhouettes. New technologies are 
emerging that can capture body shape and motion 
simultaneously at a fairly high frame rate (Nguyen and 
Wang, 2010; Izadi et al., 2011).  
 
Shape Reconstruction from Imagery Data 
 From Photos 
Seo et al. (2006) presented a data-driven shape model 
for reconstructing human body models from one or 
more 2D photos. A data-driven, parameterized 
deformable model acquired from a collection of range 
scans of a real human body is used to complement the 
image-based reconstruction by leveraging the quality, 
shape, and statistical information accumulated from 
multiple shapes of range-scanned people. Guan et al. 
(2009) developed a method for estimating human body 
shape from a single photograph or painting.  
 From Video Sequences 
The recent work done by Balan et al. (2007) proposed a 
method for recovering human shape models directly 
from images. Specifically, the human body shape is 
represented by the SCAPE (Anguelov et al., 2005) and 
the parameters of the model are directly estimated from 
image data. A cost function between image 
observations and a hypothesized mesh is defined and 
the problem is formulated as an optimization. Hasler et 
al. (2009a) developed a method to estimate the detailed 
3-D body shape of a person even if heavy or loose 
clothing is worn. Within a space of human shapes 
learned from a large database of registered body scans, 
the method fits a template model (a 3-D scan model of 
a person wearing clothes) to the silhouettes of video 
images using ICP (iterative closest point) registration 
and Laplacian mesh deformation. 
 

HUMAN MOTION CAPTURE AND 
PREDICTION 

 
Motion capture (mocap) technologies can be marker-
based or vision-based.  The challenges for motion 
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analysis involve inverse kinematics (IK) and motion 
mapping and creation.  
 
Marker-Based Motion Capture 
 
As a traditional technique, marker-based motion 
capture technology has been developed to an advanced 
level that provides accurate and consistent 
measurements of body motion. The markers used in 
motion capture can be aligned with those used during 
body scanning thus providing some correspondence 
between body shape and skeleton motion. Various 
software tools are available for the analysis of motion 
capture data. The major limitations of marker-based 
motion capture technology include (a) it can only be 
used in a laboratory environment; (b) it has a limited 
coverage space; and (c) it requires subject cooperation.  
Several new technologies are emerging that use sensors 
mounted on the body (e.g., RF, accelerometers 
(Tautges et al., 2010), or mini-cameras (Shiratori et al., 
2011)), enabling open-field motion capture.  
 
Markerless Motion Capture  
 
As an active research area in computer vision for 
decades, markerless or vision-based human motion 
analysis has the potential to provide an inexpensive, 
unobtrusive solution for the estimation of body poses 
and motions. Extensive research efforts have been 
performed in this domain (Moeslund et al., 2006), 
which have been motivated by the fact that many 
application areas, including surveillance, human–
computer interaction and automatic annotation, will 
benefit from a robust solution to the problem (Poppe 
2007). Agarwal and Triggs (2006) developed a 
learning-based method for recovering 3-D human body 
pose from single images and monocular image 
sequences. Their approach requires neither an explicit 
body model nor prior labeling of body parts in the 
image. Instead, it recovers pose by direct nonlinear 
regression against shape descriptor vectors extracted 
automatically from image silhouettes. A recent 
development is capturing motion and dynamic body 
shape simultaneously from video imagery. Using 
SCAPE (Anguelov et al., 2005), Balan et al. (2007) 
developed a method for estimating the model 
parameters directly from image data. Their results 
showed that such a rich generative model as SCAPE 
enables the automatic recovery of detailed human 
shape and pose from images. Hasler et al. (2009b) 
presented an approach for markerless motion capture of 
articulated objects, which are recorded with multiple 
unsynchronized moving cameras. Instead of using 
fixed (and expensive) hardware synchronized cameras, 
their approach is able to track people with off-the-shelf 
handheld video cameras.   

 
The approach developed by Agarwal and Triggs (2006) 
was implemented in this paper for markerless motion 
capture. As shown in Figure 6, using body scan and 
mocap data collected in the AFRL 3dHSL Lab, 3-D 
models were created for four activities (digging, 
walking, jogging, and throwing) using Blender 
(http://www.blender.org/). By animating the model of 
each activity, a sequence of 3-D shape models was 
generated for each activity, from which a sequence of 
silhouettes was derived. By establishing the 
relationship between image features (which are 
described by the histogram of shape context of 
silhouettes) and joint angles (which are used to define 
poses), the motion of the subject (which is defined by a 
sequence of poses) is captured. The resulting motion is 
applied to the skeleton shown in each image in Figure 
6, matching the animation’s motion. 

 
(a) Digging 

 
(b) Walking 

 
(c) Jogging 
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(d) Throwing 

Figure 6. Markerless motion capture from 2-D video 
imagery 

 
Inverse kinematics 
 
Inverse kinematics, the process of computing the pose 
of a human body from a set of constraints, is widely 
used in computer animation. However, the problem is 
often underdetermined. While many poses are possible, 
some poses are more likely than others. In general, the 
likelihood of poses depends on the body shape and 
style of the individual person. Grochow et al. (2004) 
developed an inverse kinematics system based on a 
learned model of human poses that can produce the 
most likely pose satisfying the prescribed constraints in 
real time. Training the model on different input data 
leads to different styles of IK. The model is represented 
as a probability distribution over the space of all 
possible poses. This means that the model can generate 
any pose, but prefers poses that are most similar to the 
space of poses in the training data. A common task of 
IK is to derive joint angles from markers, for which, 
OpenSim (https://simtk.org/home/opensim), an open 
source software package can be used.     
 
Motion Mapping 
 
Motion mapping and motion generation are two issues 
related to IK but have independent significance. It is 
desirable to map the motion from one subject to 
another, because it is not feasible to do motion capture 
for every subject and for every motion or activity. By 
assuming that different subjects will take the same key 
poses in an action or motion, one approach is mapping 
joint angles from one to another, as shown in Figure 7 
where motion is mapped onto 3dsMax biped models. In 
these models, since the pelvis is usually treated as the 
reference segment, the hip joint center vertical location 
needs to be adjusted to reflect the variation of subject 
size in order to ensure appropriate contact between the 
feet and the ground.  While motion mapping may be 
fairly natural and realistic, it may not be able to provide 
sufficiently high biofidelity, because the differences 

between human bodies and the interaction between 
human body and boundaries are ignored. 

 
Figure 7.  Mapping the captured motion into a group 

 
Motion Creation 
 
One method of motion creation is to create several key 
poses (frames) and then fills the gaps between those 
key poses via interpolation. This approach is often used 
by game developers. The created motion is based on 
human imagination and thus lacks realism and 
biofidelity, as shown in Figure 8.  Alternatively, 
motion creation can be handled in more rigorous and 
scientific ways. Wei et al. (2011) showed how 
statistical motion priors can be combined seamlessly 
with physical constraints for human motion modeling 
and generation. The key idea of the approach is to learn 
a nonlinear probabilistic force field function from 
prerecorded motion data with Gaussian processes and 
combine it with physical constraints in a probabilistic 
framework. In addition, they showed how to effectively 
utilize the new model to generate a wide range of 
natural-looking motions that achieve the goals 
specified by users. Some tools were developed for 
motion creation based on biomechanics and physics, 
such as DANCE (http://www.arishapiro.com/), which 
is used for physics-based animation research, including 
dynamic simulation of rigid bodies, motion capture and 
dynamic control. 

 
Figure 8. The comparison between two animations 

(mocap data vs. key framing data) 
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ACTIVITY REPLICATION AND CREATION   
 
Replication 
  
Activity replication is replicating a human activity that 
was recorded from a human subject in a laboratory 
using 3-D modeling.  Technologies that are capable of 
capturing human motion and 3-D dynamic shapes of a 
subject during motion are not yet ready for practical 
use.  Data that can be readily used for 3-D activity 
replication are not currently available. Alternatively, a 
motion capture system can be used to capture markers 
on the body during motion and a 3-D body scanner can 
be used to capture the body shape in a pose.  Based on 
the body scan data and motion capture data, animation 
techniques can be used to build a digital model to 
replicate a human activity in 3-D space.  
 
In this paper, open-source software was used for 
activity replication. MeshLab 
(http://meshlab.sourceforge.net/) was used to process 
3-D scan data, OpenSim was used to derive skeleton 
models and the associated joint angles from motion 
capture data, and Blender was used to create an 
animation model that integrated body shape and 
motion.  Human subject testing for data collection on 
human activities was conducted in the 3-D Human 
Signatures Laboratory (3DHSL) at the Air Force 
Research Laboratory (AFRL). The data collected 
included scans and mocap data.   
 
The body scan data acquired consists of a large number 
of data points (vertices) (typically a half-million or 
more) and may contain holes and large openings. The 
data were processed so that it could be used for the 
modeling. MeshLab was used to clean-up the data and 
to fill holes.  Smoothing and approximation functions 
in MeshLab were implemented to reduce the total 
number of faces for each subject scan to 50,000 and to 
create meshes of the body shape required for the 
modeling.  OpenSim was used to derive a skeleton 
model from mocap data (TRC file) and to calculate the 
joint angles for the skeleton. The skeleton model and 
associated joint angles were put in a Bio-vision 
Hierarchical (BVH) file. Both the body surface mesh 
data and the BVH file were imported into Blender. 
Blender was used to integrate the shape with the 
motion and to create an animation model that replicates 
an activity.  Figure 9 shows the models created for four 
activities (jogging, limping, shooting, and walking) at a 
particular frame. Note that activity replication can be 
done using commercial modeling tools (e.g., Autodesk 
3dsMax and Maya).  
 
Creation 
 

Activity creation involves motion creation and 
dynamic shape creation. While some methods have 
been developed for motion creation, many issues 
remain. Creating a dynamic shape for any pose or 
activity is still a challenging task. Alternatively, in the 
following example, by matching body shape data with 
mocap data, two activities (diving-rolling and running-
ducking) were created using body scan data and mocap 
data collected from different subjects. The mocap data 
for the two activities were derived from the Carnegie 
Mellon University (CMU) mocap database 
(http://mocap.cs.cmu.edu/). Using the lengths of major 
segments as the search criteria, the body shape data 
were derived from the CAESAR (Civilian American 
and European Surface Anthropometry Resource) 
database (Robinette et al., 1999). Then, 3-D animation 
models were created using Blender which fuses the 
shape and motion information together and deforms the 
body shape in accordance with body motion , as shown 
in Figure 10.  
 

 
Figure 9. Replication of a subject in four activities: 

limping, jogging, shooting, and walking.   

  
(a) Diving-rolling           (b) Running-ducking  

Figure 10.  Activity creation using body scan data and 
mocap data from different subjects. 

 
CONCLUSIONS 

 
Biofidelity is a critical factor when human activity 
M&S is used in a virtual reality or training system that 
is human centered. In order to attain high biofidelity, a 
concerted effort for accurate human shape and motion 
data collection, motion analysis, and shape modeling 
must be undertaken. Based on subject tests and data 
collection, human activities can be replicated in 3-D 
space with fairly high biofidelity. The data-driven 
human activity models can be incorporated into highly 
fidelic 3-D scenario models to provide natural and 
realistic exposure and experience to trainees/users. 
However, it is not feasible to collect data for every 
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subject and for every activity. Therefore, it is necessary 
to develop technologies for creating activities. Activity 
creation relies on dynamic shape modeling and motion 
creation, for which further investigations are needed to 
overcome remaining technical obstacles.  
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